Forward Looking Statements

This presentation contains certain forward-looking statements about Curis, Inc. ("we," "us," or the "Company") within the meaning of the Private Securities Litigation Reform Act of 1995, as amended. Words such as "expect(s)," "believe(s)," "will," "may," "anticipate(s)," "focus(es)," "plans," "mission," "strategy," "potential," and similar expressions are intended to identify forward-looking statements. Forward-looking statements are statements that are not historical facts, reflect management’s expectations as of the date of this presentation, and involve important risks and uncertainties. Forward-looking statements herein include, but are not limited to, statements with respect to the timing and results of future clinical and pre-clinical milestones; the timing of future preclinical studies and clinical trials and results of these studies and trials; the clinical and therapeutic potential of our drug candidates; and management’s ability to successfully achieve its goals. These forward-looking statements are based on our current expectations and may differ materially from actual results due to a variety of important factors including, without limitation, risks relating to: whether any of our drug candidates will advance further in the clinical development process and whether and when, if at all, they will receive approval from the U.S. Food and Drug Administration or equivalent foreign regulatory agencies; whether historical preclinical results will be predictive of future clinical trial results; whether historical clinical trial results will be predictive of future trial results; whether any of our drug candidate discovery and development efforts will be successful; whether any of our drug candidates will be successfully marketed if approved; our ability to achieve the benefits contemplated by our collaboration agreements; management’s ability to successfully achieve its goals; the sufficiency of our cash resources; our ability to raise additional capital to fund our operations on terms acceptable to us or the use of proceeds of any offering of securities or other financing; general economic conditions; competition; and the other risk factors contained in our periodic and interim reports filed with the Securities and Exchange Commission which are available on the SEC website at www.sec.gov. You are cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events, except as required by law.
Curis Mission & Strategy

Developing the New Generation of Targeted Cancer Drugs

Mission
Help patients suffering with cancer to live longer and healthier lives

Strategy
Select the right targets
Design the right drugs
Study the right patients
Overview

<table>
<thead>
<tr>
<th>Investment Thesis</th>
<th>Curis develops novel, first-in-class, cancer therapeutics that have blockbuster potential in areas of unmet patient need</th>
</tr>
</thead>
</table>
| Robust Pipeline | Fimepinostat: first-in-class suppressor of MYC
 There are no drugs currently approved for MYC inhibition |
| | CA-4948: first-in-class suppressor of the TLR Pathway
 There are no drugs currently approved that block the entire TLR pathway |
| | CA-170: first-in-class suppressor of VISTA
 There are no drugs currently approved for VISTA inhibition |
| Corporate | • Experienced management team with proven capabilities
 • Curis R&D pioneered the FDA-approved, first-in-class suppressor of the Hedgehog pathway (Erivedge®) partnered with and commercialized by Genentech and Roche for advanced basal cell carcinoma
 • Strong financial position, with cash balance of $35M as of June 30, 2019 |
Evolution of Curis

Progressing through Clinical Studies on the Path to Registration

2018

Regulatory Planning

- Work with investigators and FDA to determine clinical path
- Identify patient populations and open clinical studies

2019

Dose Escalation

- Report Safety Data for Fimepinostat in DH/DE DLBCL
- Report Efficacy Data for CA-170 in Mesothelioma
- Report Efficacy Data for CA-4948 in MYD88 DLBCL/WM

2020

Expansion

- Expand studies with additional indications and combo-therapy
- Report efficacy data in dose expansion studies
- Outline plan for NDA filing and path to registration
Pipeline of Oncology Drug Candidates

<table>
<thead>
<tr>
<th>Indication</th>
<th>Proof of Principle</th>
<th>Safety</th>
<th>Dose Optimization</th>
<th>Clinical Activity</th>
<th>Pivotal</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heme Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fimepinostat</td>
<td>MYC-altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC/PI3K</td>
<td>Cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-4948*</td>
<td>MYD88/TLR-altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRAK4</td>
<td>DLBCL, WM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-4948*</td>
<td>IL-1R/TLR-altered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRAK4</td>
<td>AML, MDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune Checkpoint Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-170*</td>
<td>VISTA-expressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA/PDL1</td>
<td>Cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-327*</td>
<td>TIM3-expressing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIM3/PDL1</td>
<td>Cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Drug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erivedge**</td>
<td>Basal Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedgehog</td>
<td>Carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* IP licensed from Aurigene

** IP licensed to Genentech (Curis receives royalty income)

Upcoming Catalysts

- **Safety Data in DH/DE DLBCL**
- **Efficacy Data in DLBCL, WM**
- **Efficacy Data in Mesothelioma**
Targeted Drugs in Heme Malignancies

Fimepinostat: For treatment of MYC-altered cancers
Fimepinostat Overview

In development for patients with MYC-altered cancers

Profile

<table>
<thead>
<tr>
<th>Value Proposition</th>
<th>Population</th>
<th>Product Description</th>
</tr>
</thead>
</table>
| • First-in-class drug with demonstrated anti-tumor activity in MYC-altered patients
• Composition-of-matter IP extends into 2032 | • Patients with MYC-altered cancer
(>50% of all cancers are effected by MYC)³ | • Potent and orally bioavailable dual inhibitor of HDAC and PI3K enzymes¹
• Favorable safety profile in over 200 patients |

Mechanism #1

The HDAC component

- Suppresses MYC transcription²

Mechanism #2

The PI3K component

- Enhances MYC destruction²

Dual Mechanism leads to potent and dose-dependent downregulation of MYC protein

<table>
<thead>
<tr>
<th>Protein</th>
<th>Control</th>
<th>1000</th>
<th>100</th>
<th>10</th>
<th>1</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac-H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAKT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protein levels in DLBCL cells after treatment with Fimepinostat (Curis Preclinical Study)

1) Qian et al. Clin Cancer Res. 2012. 18: 4104
2) Sun et al. Mol Cancer Ther. 2017. 6: 285
Clinical data provides strong rationale for development in MYC-altered lymphoma

Monotherapy Efficacy

Deep responses
- 8 complete responses (CR); 6 partial responses (PR)
- 2 patients able to proceed to transplant

Durable responses
- Median duration = 13.6 months

Fast Track designation
- Following FDA review of efficacy data
Fimepinostat + venetoclax are highly synergistic in preclinical models

Active single-agents in DLBCL
Fimepinostat = 23% ORR with 16.6 month DOR¹
Venetoclax = 18% ORR²

Highly synergistic combination
• Combination index of < 0.1 at multiple doses³

High unmet need
NCCN: Double-hit lymphoma (DHL) is poor outcome group
FDA: DHL is high unmet need

Regulatory path
• Possibility for accelerated approval in DHL or other orphan indications
• Full approval with randomized controlled trial

¹ 14 PR/CR out of 60 patients in Ph1 & Ph2 (23% ORR)
² Davids et al. JCO. 2017. 35:826
³ Booher et al. ASH 2016 (poster #4184)
⁴ Data from Curis preclinical study
Phase 1 combination study designed to demonstrate combination is safe

Patient Population
- Patients with R/R DLBCL, including DH/DE Lymphoma
- 8 Study Sites (US only)

Treatment
- Fimepinostat: Oral daily (5 days on, 2-days off)
- Venetoclax: Oral daily (with rapid dose ramp-up)

Objective
- Safety/tolerability during dose escalation
- Efficacy during expansion
 - Each single agent independently provides efficacy
 - Strong efficacy synergy in preclinical studies

Expected 2019 Catalyst Safety Data in 2H ‘19

Dose Level 1
- Fim: 30mg
- Ven: 400mg
- n=3 [+3]

Dose Level 2
- Fim: 60mg
- Ven: 400mg
- n=3 [+3]

Expansion
- Fim + Ven
- n=[30-60]
Targeted Programs in Heme Malignancies

CA-4948: For treatment of TLR-altered cancers
CA-4948 Overview
In development for patients with MYD88/TLR-altered disease

Profile

<table>
<thead>
<tr>
<th>Value Proposition</th>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• First-in-class IRAK4 inhibitor in cancer</td>
</tr>
<tr>
<td></td>
<td>• Specific malignancies have overactivity of the myddosome/TLR pathway (dependent upon IRAK4)</td>
</tr>
<tr>
<td></td>
<td>• Composition-of-matter IP extends into 2035</td>
</tr>
</tbody>
</table>

| Population | Lymphoma: IRAK4-dependent pathway activated; ibrutinib-treated patients (strong synergy) |
| | Leukemia: Tumors with splicing mutations that overexpress IRAK4 |

| Product Description | Potent and orally bioavailable inhibitor of IRAK4 for treatment of MYD88-altered tumors and augmentation of BTK inhibition |

Designed to be best-in-class IRAK4 inhibitor

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Affinity (Kd) (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRAK4</td>
<td>23</td>
</tr>
<tr>
<td>IRAK1</td>
<td>12,000</td>
</tr>
<tr>
<td>IRAK2</td>
<td>>20,000</td>
</tr>
<tr>
<td>IRAK3</td>
<td>8,500</td>
</tr>
</tbody>
</table>

Potent suppressor of signal transduction

Phospho-protein levels in AML cells after treatment with CA-4948

1) Data from Curis preclinical study
2) Booher et al. AACR 2017 (poster #1168)
Mechanism of Action

In development for patients with MYD88/TLR-altered disease

Inhibiting either of these two pathways should provide benefit to patients with B cell lymphoma, CA-4948 targets oncogenic activity in the TLR pathway by blocking IRAK4

Oncogenic
- Dysregulation drives excessive B Cell proliferation

Pathway validated
- Waldenström’s macroglobulinemia
 - MCL, MZL, CLL

BTK inhibition effective
- Ibrutinib is FDA approved

BTK Pathway

- **Ibrutinib**
- **BTK**
- **CARD11**
- **MALT1**
- **BCL10**
- **NF-kB**

TLR Pathway

- **Myddosome**
- **MYD88**
- **IRAK1**
- **IRAK4**
- **CA-4948**

1) IMBRUVICA Package Insert. Rev 08/2018
4) Smith et al. Nat Cell Biol 2019
Potent preclinical anti-tumor activity in MYD88-altered DLBCL models

1) Data from Curis preclinical study; Booher, et al. 4th Waldenstrom Roadmap Symposium

Anti-tumor activity in MYD88-altered DLBCL

(OCI-Ly10)

Preclinical Efficacy

Potent as monotherapy
- Anti-tumor activity in MYD88-altered DLBCL

Strong Synergy
- Anti-tumor activity highly synergistic with BTK inhibition

1) Data from Curis preclinical study; Booher, et al. 4th Waldenstrom Roadmap Symposium
CA-4948 Phase 1 Study in R/R Lymphoma

Initial clinical data show safety, PK, PD, and anti-tumor activity

Patient Population
- Patients with R/R Lymphoma (incl DLBCL, WM, and patients with MYD88-altered disease)

Treatment
- Oral, once-daily (QD) or twice-daily (BID), dosing in continuous 21-day cycles

Objective
- Safety/tolerability during dose escalation
- Efficacy during expansion

Initial Data Readout
- Target inhibition
- Excellent pharmacokinetic profile
- Well tolerated
- Anti-tumor activity at multiple dose levels

Dosage Levels
- 50mg QD, n=3 [+3]
- 100mg QD, n=3 [+3]
- 50mg BID, n=3 [+3]
- 100mg BID, n=3 [+3]
- 200mg BID, n=3 [+8]
- 400mg BID, n=3 [+3]

Continue dose escalation until RP2D is identified
Small Molecule Immune Checkpoint Inhibitor

CA-170: For treatment of VISTA/PDL1-expressing cancers
CA-170 Overview

In development for patients with VISTA/PDL1-expressing cancers

Curis is the first to advance an oral small molecule checkpoint inhibitor into the clinic

Profile

Value Proposition
- First-in-class oral inhibitor of VISTA
- Only anti-VISTA drug in the clinic
- Composition-of-matter IP through 2034

Population
- Patients with VISTA-expressing cancers, including Mesothelioma, NSCLC, and TNBC
- Patients whose disease progresses after treatment with immune checkpoint therapy

Product Description
- Orally available, small molecule targeting VISTA and PD-L1 immune checkpoints
- Favorable safety profile demonstrated in 59 patients

CA-170 binds to the receptor-ligand interaction site

Dose dependent activation of VISTA or PDL1inhibited human T cells *ex-vivo*¹

Test Compound Concentration (log nM)

<table>
<thead>
<tr>
<th></th>
<th>CA-170 (EC₅₀=68nM)</th>
<th>Anti-VISTA Ab (EC₅₀=27nM)</th>
<th>Isotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISTA</td>
<td>CA-170</td>
<td>Anti-VISTA Ab</td>
<td>Isotype</td>
</tr>
<tr>
<td>PD-L1</td>
<td>CA-170</td>
<td>Anti-PD1 Ab</td>
<td>Isotype</td>
</tr>
</tbody>
</table>

IFN-γ production used as a marker for T cell activation

1) Lazorchak et al. AACR 2016
2) Data from Ph1 (NCT02812875) study
VISTA is highly expressed on tumor cells and infiltrating immune cells

- In addition to T cells, VISTA is expressed on tumor cells in subpopulations of certain cancers
 - ~90% of Mesothelioma cells
 - ~20% of NSCLC cells
 - ~14% of TNBC cells
 - ~8% of gastric cancer cells

- VISTA expression on immune cells is up-regulated after checkpoint inhibitor therapy
 - VISTA expression is induced on T Cells and macrophages in response to ipilimumab treatment
 - ~60% of melanoma patients show increased VISTA expression at progression

CA-170 Phase 1 Efficacy Study in Mesothelioma

Patient Population
- Patients with Mesothelioma (High VISTA), that have been previously treated and whose disease has been deemed incurable
- 6 Study Sites (US and UK)

Objective
- Anti-cancer efficacy

Treatment
- Randomize to High Dose or Low Dose
- Crossover to High Dose, if no response or if disease progresses (PD)

Expected 2019 Catalyst Initial Data in 2H ‘19
- Randomize two parallel cohorts
- Total Daily Dose

High Dose
- 2400mg
- n=6

Low Dose
- 400mg
- n=6

Expected dose regimen: (BID dosing)

Cross-over to high dose if no response or if PD
Summary

Investment Thesis
Curis develops novel, first-in-class, cancer therapeutics that have blockbuster potential in areas of unmet patient need

<table>
<thead>
<tr>
<th>Robust Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fimepinostat: first-in-class suppressor of MYC</td>
</tr>
<tr>
<td>There are no drugs currently approved for MYC inhibition</td>
</tr>
<tr>
<td>CA-4948: first-in-class suppressor of the TLR Pathway</td>
</tr>
<tr>
<td>There are no drugs currently approved that block the entire TLR pathway</td>
</tr>
<tr>
<td>CA-170: first-in-class suppressor of VISTA</td>
</tr>
<tr>
<td>There are no drugs currently approved for VISTA inhibition</td>
</tr>
</tbody>
</table>

Upcoming Milestones In 2H 2019

- Safety data in fimepinostat-venetoclax combination study
- Efficacy data in CA-4948 study in DLBCL/WM
- Efficacy data in CA-170 study in Mesothelioma
Curis Leadership Team

Rachel Blasbalg
Head, Human Resources

James Dentzer
President & CEO

Christine Guertin
Head, Regulatory

Robert Martell
Head, R&D

Mark Noel
Head, Intellectual Property

Reinhard von Roemling
Head, Clinical Development

Raul Soikes
Head, Portfolio Management

Nancy Soohoo
General Counsel

William Steinkrauss
Chief Financial Officer