SRA737 Monotherapy in CCNE1^{DD}-High Grade Serous Ovarian Cancers

Rationale

- Approximately 30% of high grade serous ovarian cancers (HGSOC) harbor CCNE1 gene amplifications.

- CCNE1 amplifications result in hyperactivation of CDK2, which is coupled to excessive replication fork collapse, genomic instability, and the potential resistance to PARPi therapy.

- CCNE1 is known to induce replication stress (RS) and genome instability, leading to increased cellular radiosensitivity as Checkpoint kinase 1 (Chk1) is an essential effector of the cellular RS response to induced DNA damage. RS may be formed by single-strand breaks (SSBs) or double-strand breaks (DSBs), leading to cancer cell death if not repaired.

Conclusions

- Monotherapy, SRA737 led to a highly reduced ability of CCNE1^{DD} to induce fork collapse, genomic instability, and the potential resistance to PARPi therapy.

- CCNE1 amplification increases the risk of genomic instability resulting in subsequent cell death and tumor regression in CCNE1^{DD}-ovarian cancer models.

SRA737 + PARPi in HRD deficient and Acquired PARPi-resistant High Grade Ovarian Cancers

Rationale

- A distinct subgroup comprising approx 30% of HGSOC have distinct homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to poly (ADP-ribose) polymerase (PARPi) treatment, a mechanism that involves inactivating PARPi-resistant tumors. SRA737 is a potent Chk1 inhibitor, SRA737 in combination with PARPi may exploit this additional mechanism of PARPi sensitivity.

Conclusions

- The efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 1

- Shows Chk1 is inhibited in HGSOC by SRA737 monotherapy and PARPi in combination.

Figure 2

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 3

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 4

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 5

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 6

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 7

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.

Figure 8

- Shows the efficacy of SRA737 monotherapy is currently being investigated in HGSOC, A distinct subgroup comprising approximately 50% of HGSOC have defective homologous recombination repair (hHRD) loss of function which confers a distinct sensitivity to PARPi treatment.