Hepcidin Suppression by Momelotinib Is Associated With Increased Iron Availability and Erythropoiesis in Transfusion-Dependent Myelofibrosis Patients

Stephen T. Oh, Moshe Talpaz, Aaron T. Gerds, Vikas Gupta, Srdan Verstovsek, Ruben Mesa, Carole Miller, Candido Riveralda, Angela Fleischmann, Swati Goel, Mark Heaney, Casey O’Connell, Murat Arcaysoy, Yafeng Zhang, Jun Kawashima, Thomas Ganz, Carrie Baker Brachmann

1Washington University School of Medicine, St. Louis, MO; 2University of Michigan, Ann Arbor, MI; 3Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; 4Princess Margaret Cancer Centre, Toronto, Ontario, Canada; 5The University of Texas MD Anderson Cancer Center, Houston, TX; 6Mayo Cancer Center at University of Texas Health San Antonio, San Antonio, TX; 7Memorial Sloan-Kettering Cancer Center, Baltimore, MD; 8Mayo Clinic, Jacksonville, FL; 9University of Kentucky; 10New York University; 11University of Southern California, Keck School of Medicine, Los Angeles, CA; 12Duke University School of Medicine, Durham, NC; 13Oxalis Sciences, Inc., Foster City, CA; 14David Geffen School of Medicine, Los Angeles, CA

INTRODUCTION

Patients develop anemia as a result of organ fibrosis, development, progression, and/or its treatment, including with cytokines and other experimental Janus kinase (JAK) inhibitors.

Key Inclusion Criteria

- Age ≥18 years with diagnosis of primary MF (PMF), post-polycythemia vera MF (post-PV MF), or post-essential thrombocythemia MF (post-ET MF) and requiring RBC therapy (at the opinion of the investigator)
- Patellar spindle or intermediate-malignancy within 3 months prior to the first dose of MMB
- Prior treatment with JAK inhibitor within 21 days of the planned first dose of MMB
- Free of active infection (as per institutional standards) and previous ≤2 antecedent anemia in a rodent model

In this translational biology study, we determined the impact of MMB on plasma hepcidin, markers of iron metabolism, and clinical outcomes in patients with myelofibrosis.

OBJECTIVES

- Primary objective: determine the hepcidin suppression response rate for transfusion independence (TD) subjects with MF treated with MMB
- Secondary objectives:
 - Evaluate baseline levels and changes in markers of iron metabolism
 - Evaluate baseline levels and changes in markers of hepcidin

METHODS

- Patients with primary or secondary myelofibrosis were randomized in a 1:1 ratio to MMB or no treatment.
- Key exclusion criteria:
 - Prior treatment with MMB or JAK inhibitor within 21 days of the planned first dose of MMB
 - History of active infection (as per institutional standards) and previous ≤2 antecedent anemia in a rodent model
- Transfusion Independence Response (TI-R), transfusion independence responders; TI-NR, transfusion independence non-responders
- By Week 24, 14 (34.1%, 90% CI: 22.0–48.1%) patients had a TI-R and 39.0% had no RBC transfusion for ≥8 weeks at any time on study
- Serum iron peaked at Week 2 (Figure 2A) and thereafter declined, consistent with the restoration of transfusion independence and iron homeostasis
- CRP also decreased a median 54.8% from Baseline, indicating overall reduced inflammation and improved erythropoiesis

CONCLUSIONS

- MMB treatment elicited a significant rate of transfusion independence in this advanced, TD population (34.1% for ≥8 weeks at any time on study).
- These data are consistent with the optimized and differentiated activity of MMB against JAK1, JAK2, and ACVR1 and leading to decreased plasma hepcidin, improved iron homeostasis and clinical outcomes.
- Rates of TI-R were similar to those for TD MF patients in other MMB trials
- Safety was consistent with previous studies of MMB in MF
- Overall, the study suggests that modulation of hepcidin by MMB is sufficient to boost erythropoiesis, particularly in MF patients with lower baseline inflammation and greater erythropoietic potential.