INBRX-106: a novel hexavalent anti-OX40 agonist for the treatment of solid tumors

September 30, 2021
This presentation contains forward-looking statements. In some cases, you can identify forward-looking statements by the words “will,” “expect,” “intend,” “plan,” “objective,” “believe,” “estimate,” “potential,” “continue” and “ongoing,” or the negative of these terms, or other comparable terminology intended to identify statements about the future. These statements are based on management’s current beliefs and expectations. These statements include but are not limited to statements regarding Inhibrx, Inc.’s (the “Company”) business strategy, the Company’s plans to develop and commercialize its product candidates, the safety and efficacy of the Company’s product candidates, the Company’s plans and expected timing with respect to clinical trials and regulatory filings and approvals, and the size and growth potential of the markets for the Company’s product candidates. These statements involve substantial known and unknown risks, uncertainties and other factors that may cause the Company’s actual results, levels of activity, performance or achievements to be materially different from the information expressed or implied by these forward-looking statements. Additional information regarding the Company’s risks and uncertainties are described from time to time in the “Risk Factors” section of our Securities and Exchange Commission filings, including those described in our Annual Report on Form 10-K as well as our Quarterly Reports on Form 10-Q, and supplemented from time to time by our Current Reports on Form 8-K.

The Company may not actually achieve the plans, intentions or expectations disclosed in its forward-looking statements, and you should not place undue reliance on the Company’s forward-looking statements. Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements the Company makes. The forward-looking statements in this presentation represent the Company’s views as of the date of this presentation. The Company anticipates that subsequent events and developments will cause its views to change. However, while the Company may elect to update these forward-looking statements at some point in the future, the Company has no current intention of doing so except to the extent required by applicable law. You should, therefore, not rely on these forward-looking statements as representing the Company’s views as of any date subsequent to the date of this presentation.

The investigational product candidates discussed in this presentation have not been approved or licensed by the U.S. Food and Drug Administration or by any other regulatory authority, and they are not commercially available in any market. This presentation also contains estimates and other statistical data made by independent parties and by the Company relating to market size and growth and other data about its industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. In addition, projections, assumptions, and estimates of the Company’s future performance and the future performance of the markets in which it operates are necessarily subject to a high degree of uncertainty and risk.

This presentation shall not constitute an offer to sell or the solicitation of an offer to buy securities.
Four differentiated clinical programs

INBRX-101
AAT-Fc fusion protein
- Potential for first meaningful advancement for patients in 35 years
- Estimated ~$2B+ market size
- Initial Phase 1 data late this year
- Registration study could start in late 2022

INBRX-109
Tetravalent DR5 agonist
- Single agent activity in chondrosarcoma and mesothelioma
- Potential rapid path to approval in chondrosarcoma, registration study initiated
- First combination cohorts: mesothelioma, pancreatic adenocarcinoma and Ewing sarcoma with data in H1 2022

INBRX-106
Hexavalent OX40 agonist
- Potential across numerous tumors, including cold tumors
- Strong mechanistic rationale for PD-1 combination
- Key data readouts in combination expansion cohorts in 2H 2022

INBRX-105
PD-L1 x 4-1BB tetravalent conditional agonist
- Potential across all PD-L1 expressing tumors
- 4-1BB agonism is clinically validated
- Strong mechanistic rationale for PD-1 combination
- Key data readouts in combination expansion cohorts in 2H 2022
Overview

1. Background
2. Non-clinical data
3. Clinical biomarker data
4. Conclusions
OX40 (CD134) Overview

- OX40 is a member of the TNF receptor superfamily
- Expressed on memory and regulatory T cells and is inducibly upregulated on activated T cells
- Ligation of OX40 costimulates effector T cell activity
- Expression significantly increased in tumor microenvironment

[Link: https://www.creative-diagnostics.com/ox40-ox40l-signaling-pathway.htm]
OX40 agonism

- Ligands are cell surface trimers
- Trimerization is usually the minimal activation cluster
- Agonism of OX40 drives NF-κB signaling
- Higher order clusters mediate stronger and more potent activation of NF-κB
- Bivalent Abs are poor OX40 agonists
INBRX-106 is a best-in-class OX40 agonist

INBRX-106 incorporates all known attributes for optimal OX40 agonism
- Increased valency and effector enabled Fc domain have both been empirically shown to promote activity
- Lack of ligand blocking activity may provide APC activation and natural cellular crosstalk

<table>
<thead>
<tr>
<th>Valency</th>
<th>Isotype</th>
<th>Ligand blocking</th>
<th>Candidates</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-</td>
<td>IgG1</td>
<td>Y</td>
<td>MOXR-0916</td>
<td>Discontinued</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GSK-3174998</td>
<td>Ph1 (2019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMS-986178</td>
<td>Ph1 (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>INCAGN-1949</td>
<td>Ph1 (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ABBV-368</td>
<td>Ph1 (HNSCC, 2020)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IBI-101</td>
<td>Ph1 (2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDI-0562</td>
<td>Discontinued</td>
</tr>
<tr>
<td>Bi-</td>
<td>IgG2</td>
<td>Y</td>
<td>PF-04518600</td>
<td>Discontinued</td>
</tr>
<tr>
<td>Bi-</td>
<td>IgG1</td>
<td>N</td>
<td>BGB-A445</td>
<td>Ph1 (2020)</td>
</tr>
<tr>
<td>Hex-</td>
<td>IgG1</td>
<td>N</td>
<td>INBRX-106</td>
<td>Ph1 (2019)</td>
</tr>
</tbody>
</table>
INBRX-106: Therapeutic Concept

<table>
<thead>
<tr>
<th>Desired outcome</th>
<th>Design specification</th>
</tr>
</thead>
</table>
| Achieve robust NF-κB signaling | • Optimize valency to promote target clustering
• 6 OX40 binding domains per molecule |
| Enable FcR-dependent clustering | • Utilize a wild-type Fc format |
| Retain natural crosstalk | • Do not block ligand |

Diagram showing the structure of OX40: sdAb with Fc and 129kDa
Valency drives OX40 agonism in *in vitro* assays

- Suboptimal CD3 stimulation can be enhanced through OX40 agonism
- INBRX-106 outperformed bivalent OX40 agonist
OX40 agonism exhibits a bell-shaped dose response relationship

- The highest optimally active dose corresponds to full receptor occupancy in both species
- Excess soluble drug leads to less than hexameric receptor engagement
OX40 engagement causes downmodulation of OX40 on primary T cells *in vitro.*

Mouse OX40 downmodulation

![Mouse OX40 downmodulation graph](image)

Human OX40 downmodulation

![Human OX40 downmodulation graph](image)
Multivalent OX40 exhibits a bell shaped dose response curve and causes rapid loss of cell surface receptor

- An INBRX-106-like molecule achieves robust activity at low doses in mouse tumor models
- OX40 loss happens very fast and is a PD biomarker of target engagement
Criteria for Single Agent RP2D Selection

1. Robust OX40 downregulation at end of infusion, as a measure of productive target engagement

2. Pharmacokinetic profile that allows for periodic agonism of OX40

3. Demonstration of peripheral pharmacodynamics (memory CD4$^+$ T cell activation and proliferation)

4. Demonstration of clinical benefit (patient enrollment-dependent)

RP2D is anticipated to be quite low based on potency, desired periodic agonism and early signs of activity
Phase 1 INBRX-106 single-agent study overview

PART 1: Dose escalation
INBRX-106 single-agent
Locally advanced or metastatic solid tumors

3+3 design
Q3W dosing interval

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
<th>N=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART 2: Dose expansion
INBRX 106 single-agent
At selected RP2D

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>N=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCLC</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
</tr>
<tr>
<td>HNSCC</td>
<td></td>
</tr>
<tr>
<td>G/GEA</td>
<td></td>
</tr>
<tr>
<td>RCC</td>
<td></td>
</tr>
</tbody>
</table>
Criteria for RP2D Selection:

1. Robust OX40 downregulation at end of infusion, as a measure of productive target engagement

• Doses between 0.001 and 3.0 mg/kg induce target downmodulation at EOI
Criteria for RP2D Selection:

2. Pharmacokinetic profile that allows for periodic agonism of OX40

- Doses between 0.001 and 0.1 mg/kg allow for repeated target engagement on a Q3W schedule
Criteria for RP2D Selection:

3. Demonstration of peripheral pharmacodynamics (memory CD4⁺ T cell activation and proliferation)

• Doses between 0.1 and 1.0 mg/kg induce greatest proliferation of a CD4 memory T cell population
Criteria for RP2D Selection:

3. Demonstration of peripheral pharmacodynamics (memory CD4\(^+\) T cell activation and proliferation)

• Doses between 0.01 and 1.0 mg/kg induce most robust peripheral memory T-cell activation
Criteria for Single Agent RP2D Selection

1. Robust OX40 downregulation at end of infusion, as a measure of productive target engagement

2. Pharmacokinetic profile that allows for periodic agonism of OX40

3. Demonstration of peripheral pharmacodynamics (memory CD4⁺ T cell activation and proliferation)

4. Demonstration of clinical benefit (patient enrollment-dependent)

0.0003 0.001 0.003 0.01 0.03 0.1 0.3 1.0 3.0
Conclusions

• Hexavalent engagement of OX40:
 - Provides superior co-stimulation to T cells
 - Enhances T-cell functionality; additional benefit of combination with PD1 blockade

• OX40 biology presents unique challenges for selecting the appropriate clinical dosing strategy
 - Rapid target downmodulation
 - Bell-shaped dose response relationship

• Integration of preclinical and clinical biomarker and bioanalytical data sets to understand optimal dose and schedule of INBRX-106
Our patients mean everything

We would like to express our appreciation for the patients who have previously participated or are currently enrolled in our clinical trials. We recognize the valuable time and effort you have committed to our research efforts, the contributions of which are essential to our success in finding new and effective treatments against cancer and rare diseases. Your contributions will help others as a result of the knowledge gained from your participation.

THANK YOU