Business Assessment of Brensocatib

June 2020

insmed

Not for promotional use
Forward-Looking Statements

This presentation contains forward-looking statements that involve substantial risks and uncertainties. "Forward-looking statements," as that term is defined in the Private Securities Litigation Reform Act of 1995, are statements that are not historical facts and involve a number of risks and uncertainties. Words herein such as "may," "will," "should," "could," "would," "expects," "plans," "anticipates," "believes," "estimates," "projects," "predicts," "intends," "potential," "continues," and similar expressions (as well as other words or expressions referencing future events, conditions or circumstances) may identify forward-looking statements. The forward-looking statements in this presentation are based upon the Company's current expectations and beliefs, and involve known and unknown risks, uncertainties and other factors, which may cause the Company's actual results, performance and achievements and the timing of certain events to differ materially from the results, performance, achievements or timing discussed, projected, anticipated or indicated in any forward-looking statements. Such risks, uncertainties and other factors include, among others, the following: the risk that INS1007 does not prove effective or safe for patients in the STOP-COVID19 study; business or economic disruptions due to catastrophes or other events, including natural disasters or public health crises; impact of the novel coronavirus (COVID-19) pandemic and efforts to reduce its spread on our business, employees, including key personnel, patients, partners and suppliers; the risks that the full data set from the WILLOW study, our six-month Phase 2 trial of INS1007 in patients with NCFBE, or data generated in further clinical trials of INS1007 will not be consistent with the results of the study; failure to successfully commercialize or sell our U.S. approval for ARIKAYCE, the Company's only approved product; uncertainties in the degree of market acceptance of ARIKAYCE by physicians, patients, third-party payors and others in the healthcare community; the Company's inability to obtain full approval of ARIKAYCE from the FDA, including the risk that the Company will not timely and successfully complete the study to validate a PRO tool and complete the confirmatory post-marketing study required for full approval of ARIKAYCE; inability of the Company, PARI or the Company's other third party manufacturers to comply with regulatory requirements related to ARIKAYCE or the Lamira® Nebulizer System; the Company's inability to obtain adequate reimbursement from government or third-party payors for ARIKAYCE or acceptable prices for ARIKAYCE; development of unexpected safety or efficacy concerns related to ARIKAYCE or INS1007; inaccuracies in the Company's estimates of the size of the potential markets for ARIKAYCE or INS1007 or in data the Company has used to identify physicians, expected rates of patient uptake, duration of expected treatment, or expected patient adherence or discontinuation rates; the Company's inability to create an effective direct sales and marketing infrastructure or to partner with third parties that offer such an infrastructure for distribution of ARIKAYCE; failure to obtain regulatory approval to expand ARIKAYCE's indication to a broader patient population; failure to successfully conduct future clinical trials for ARIKAYCE, INS1007 and the Company's other product candidates, including due to the Company's limited experience in conducting preclinical development activities and clinical trials necessary for regulatory approval and the Company's inability to enroll or retain sufficient patients to conduct the trials or generate data necessary for regulatory approval; risks that the Company's clinical studies will be delayed or that serious side effects will be identified during drug development; failure to obtain, or delays in obtaining, regulatory approvals for ARIKAYCE outside the U.S. or for the Company's product candidates in the U.S., Europe, Japan or other markets, including in the United Kingdom as a result of its recent exit from the European Union; failure of third parties on which the Company is dependent to manufacture sufficient quantities of ARIKAYCE or the Company's product candidates for commercial or clinical needs, to conduct the Company's clinical trials, or to comply with laws and regulations that impact the Company's business or agreements with the Company; the Company's inability to attract and retain key personnel or to effectively manage the Company's growth; the Company's inability to adapt to its highly competitive and changing environment; the Company's inability to adequately protect its intellectual property rights or prevent disclosure of its trade secrets and other proprietary information and costs associated with litigation or other proceedings related to such matters, restrictions or other obligations imposed on the Company by its agreements related to ARIKAYCE or the Company's product candidates, including its license agreements with PARI and AstraZeneca AB, and failure of the Company to comply with its obligations under such agreements; the cost and potential reputational damage resulting from litigation to which the Company is or may become a party, including product liability claims; the Company’s limited experience operating internationally; changes in laws and regulations applicable to the Company’s business, including any pricing reform and failure to comply with such laws and regulations; inability to repay the Company's existing indebtedness and uncertainties with respect to the Company's ability to access future capital; and delays in the execution of plans to build out an additional FDA-approved third-party manufacturing facility and unexpected expenses associated with those plans. The Company may not actually achieve the results, plans, intentions or expectations indicated by the Company's forward-looking statements because, by their nature, forward-looking statements involve risks and uncertainties because they relate to events and depend on circumstances that may or may not occur in the future. For additional information about the risks and uncertainties that may affect the Company’s business, please see the factors discussed in Item 1A, "Risk Factors," in the Company's Annual Report on Form 10-K for the year ended December 31, 2019 and any subsequent Company filings with the Securities and Exchange Commission. The Company cautions readers not to place undue reliance on any such forward-looking statements, which speak only as of the date of this presentation. The Company disclaims any obligation, except as specifically required by law and the rules of the Securities and Exchange Commission, to publicly update or revise any such statements to reflect any change in expectations or in events, conditions or circumstances on which any such statements may be based, or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements.
Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial of the DPP1 Inhibitor Brensocatib (INS1007) in Patients With Bronchiectasis: The WILLOW Study

James D. Chalmers, MB, ChB, PhD
Division of Molecular and Clinical Medicine
Ninewells Hospital and Medical School, Dundee, UK
Disclosures to Audience

For the three years preceding this presentation:

Financial Relationships With Relevant Commercial Interests:

- **Company name:** Insmed Incorporated
- **Type of relationship:** Consultancy and grant funding
Neutrophilic inflammation is key to the pathogenesis of multiple inflammatory diseases

Neurological
- Alzheimer's disease
- Stroke

Lung diseases
- Bronchiectasis
- COPD
- Severe asthma
- Cystic fibrosis
- Pneumonia
- COVID-19

Cardiovascular
- Ischaemic heart disease
- Peripheral vascular disease

Gastrointestinal disease
- Inflammatory bowel disease

Renal disease
- Chronic renal failure
- Lupus nephritis

Joint disease
- Rheumatoid arthritis

Systemic disease
- Cancer

Phagocytosis

Bacteria

Degranulation

NET release
Clear evidence that neutrophil elastase is involved in bronchiectasis and COPD pathogenesis

Excessive release of neutrophil serine proteases overwhelms natural defences

Key features of disease such as emphysema can be recreated in animal models through elastase administration

Increased infections may be related to disabled antibacterial defence through serine proteases
Neutrophil extracellular traps
Role of Neutrophilic Inflammation in Bronchiectasis

- Bronchiectasis is characterized by frequent exacerbations related to uncontrolled neutrophilic inflammation
- Proinflammatory neutrophil serine proteases (NSPs), including neutrophil elastase, are increased in sputum of patients with bronchiectasis
- Elevated NSPs are associated with exacerbations and poor quality of life

Dipeptidyl Peptidase 1 (DPP1; cathepsin C)

- DPP1 is a lysosomal cysteine protease responsible for activation of neutrophil serine proteases (NSPs) in the bone marrow during the neutrophil maturation cycle.

Brensocatib (INS1007)

- Brensocatib is an oral small molecule inhibitor of DPP1 hypothesized to interrupt the neutrophilic inflammatory processes in the lung
 - Preclinical studies have demonstrated reduction of neutrophil elastase (NE), proteinase 3, cathepsin G
 - Phase 1 studies have demonstrated dose-dependent reduction of NE activity in healthy subjects
- Under investigation for the reduction of exacerbations in patients with non-cystic fibrosis bronchiectasis

DPP1, dipeptidyl peptidase 1
Design of the WILLOW Study (NCT03218917)

- **Primary objective:**
 - Time to first exacerbation over 24 weeks in patients with non–cystic fibrosis bronchiectasis

- **Secondary objectives:**
 - Pulmonary exacerbation rate over 24 weeks
 - Change in QOL-Bronchiectasis questionnaire respiratory symptoms domain over 24 weeks
 - Change in post-bronchodilator ppFEV₁ over 24 weeks
 - Change in sputum NE activity from pretreatment to on-treatment

EOS, end of study; EOT, end of treatment; NE, neutrophil elastase; ppFEV₁, percent predicted forced expiratory volume in 1 second; QD, once daily.
WILLOW Eligibility Criteria

Major inclusion criteria

• Adults (18 to 85 years of age)
• BMI > 18.5 at screening
• Clinical history consistent with non-CF bronchiectasis
• Past chest CT demonstrating bronchiectasis
• At least 2 documented bronchiectasis exacerbations in the past 12 months
• Able to provide sputum sample during screening visit
• Sputum color of mucoid purulent or purulent at screening

Major exclusion criteria

• Underlying diseases:
 – Bronchiectasis due to CF, hypogammaglobulinemia, common variable immunodeficiency, or α1-antitrypsin deficiency
 – Primary diagnosis of COPD or asthma
 – Currently treatment for NTM, ABPA, or TB
 – Clinical diagnosis of Papillon-Lefevre Syndrome, current or recent (< 5 years) skin conditions affecting palms and soles, history of psoriasis or lichen planus, recurrent severe bacterial skin infections, history of recurring gingivitis or periodontitis

BMI, body mass index; CF, cystic fibrosis; CT, computed tomography; ABPA, allergic bronchopulmonary aspergillosis; COPD, chronic obstructive pulmonary disease; NTM, nontuberculous mycobacteria; TB, tuberculosis.
WILLOW Study Flow

416 Patients were screened
- 160 Patients were excluded
 - 256 Patients were eligible for randomization

87 Were randomized to placebo
- 13 Discontinued the study
 - 2 Adverse event
 - 10 Withdraw consent
 - 1 Physician decision
- 74 Completed the study

82 Were randomized to brensocatib 10 mg
- 6 Discontinued the study
 - 3 Adverse event
 - 2 Withdraw consent
 - 1 Lost to follow-up
- 76 Completed the study

87 Were randomized to brensocatib 25 mg
- 12 Discontinued the study
 - 3 Adverse event
 - 4 Withdraw consent
 - 1 Physician decision
 - 1 Nonadherent to study drug
 - 1 Death\(^a\)
 - 2 Other reason
- 75 Completed the study

\(^a\) Death attributed to bronchiectasis progression.
Baseline Demographics and Characteristics

Similar baseline characteristics across treatment groups, representative of a typical bronchiectasis population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Placebo (n = 87)</th>
<th>Brensocatib 10 mg (n = 82)</th>
<th>Brensocatib 25 mg (n = 87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age (SD), yr</td>
<td>64.0 (11.86)</td>
<td>64.6 (12.42)</td>
<td>63.7 (12.67)</td>
</tr>
<tr>
<td>≥ 65 years, no. (%)</td>
<td>54 (62.1)</td>
<td>48 (58.5)</td>
<td>48 (55.2)</td>
</tr>
<tr>
<td>≥ 75 years, no. (%)</td>
<td>14 (16.1)</td>
<td>20 (24.4)</td>
<td>14 (16.1)</td>
</tr>
<tr>
<td>Female, no. (%)</td>
<td>55 (63.2)</td>
<td>57 (69.5)</td>
<td>62 (71.3)</td>
</tr>
<tr>
<td>White, no. (%)</td>
<td>71 (81.6)</td>
<td>76 (92.7)</td>
<td>78 (89.7)</td>
</tr>
<tr>
<td>History of COPD, no. (%)</td>
<td>17 (19.5)</td>
<td>12 (14.6)</td>
<td>13 (14.9)</td>
</tr>
<tr>
<td>History of asthma, no. (%)</td>
<td>25 (28.7)</td>
<td>18 (22.0)</td>
<td>21 (24.1)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa positive, no. (%)(ab)</td>
<td>29 (33.3)</td>
<td>27 (32.9)</td>
<td>33 (37.9)</td>
</tr>
<tr>
<td>Chronic macrolide use, no. (%)(a)</td>
<td>14 (16.1)</td>
<td>10 (12.2)</td>
<td>16 (18.4)</td>
</tr>
<tr>
<td>Median Bronchiectasis Severity Index (range)(c)</td>
<td>7.0 (0 - 19)</td>
<td>8.0 (1 - 21)</td>
<td>8.0 (0 - 19)</td>
</tr>
<tr>
<td>≥3 Exacerbations in prior 12 months, no. (%)</td>
<td>25 (28.7)</td>
<td>23 (28.0)</td>
<td>36 (41.4)</td>
</tr>
<tr>
<td>Hospitalized for exacerbation in prior 24 months, no. (%)</td>
<td>30 (34.5)</td>
<td>31 (37.8)</td>
<td>31 (35.6)</td>
</tr>
<tr>
<td>Mean FEV(_1), % predicted (SD)</td>
<td>67.3 (23.9)</td>
<td>65.9 (23.9)</td>
<td>70.0 (23.2)</td>
</tr>
<tr>
<td>Neutrophil elastase in sputum, no. (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLQ</td>
<td>18 (20.7)</td>
<td>23 (28.0)</td>
<td>21 (24.1)</td>
</tr>
<tr>
<td>LLQ to < 20 µg/mL</td>
<td>42 (48.3)</td>
<td>28 (34.1)</td>
<td>36 (41.4)</td>
</tr>
<tr>
<td>≥20 µg/mL</td>
<td>24 (27.6)</td>
<td>31 (37.8)</td>
<td>29 (33.3)</td>
</tr>
</tbody>
</table>

\(a\) Stratification criterion, \(b\) Positive culture at the time of randomization, \(c\) Disease severity classified by validated Bronchiectasis Severity Index. BLQ, below the limit of quantification; COPD, chronic obstructive pulmonary disease; LLQ, lower limit of quantification.
Primary Endpoint: Time to First Bronchiectasis Exacerbation

- Significantly longer time to first exacerbation with brensocatib vs placebo
 - Brensocatib 10 mg: HR, 0.58 (95% CI, 0.35-0.95); P = 0.029\(^\text{a}\)
 - Brensocatib 25 mg: HR, 0.62 (95% CI, 0.38-0.99); P = 0.046\(^\text{b}\)

Chalmers J, Brensocatib in NCFBE: The WILLOW Study

\(^{a}\) Stratified log-rank test, P value vs placebo; \(^{b}\) Cox proportional hazard analysis, P value vs placebo.
Bronchiectasis Exacerbation Rate Over 24 Weeks of Treatment

Patients With Exacerbations

- Placebo: 48.3%
- Brensocatib 10 mg: 31.7%, P = 0.033a
- Brensocatib 25 mg: 33.3%, P = 0.038a

Annualized Exacerbation Rates

- Placebo: 1.37 (95% CI, 1.02-1.84), aP = 0.033
- Brensocatib 10 mg: 0.88 (95% CI, 0.61-1.26), bP = 0.041
- Brensocatib 25 mg: 1.03 (95% CI, 0.74-1.42), bP = 0.167

a Cochran-Mantel-Haenszel test, P values vs placebo; b Negative binomial model, P values for incidence rate ratio vs placebo.
Change in Sputum Neutrophil Elastase Concentrations

- Least squares means change from baseline to Week 24, P values vs placebo

Chalmers J, Brensocatib in NCFBE: The WILLOW Study
Association of Brensocatib Exposure, Achievement of Sputum Neutrophil Elastase Below the Limit of Quantification, and Time to First Exacerbation

- Patients treated with brensocatib (pooled data) who achieved sputum NE BLQ post-baseline had a lower incidence of bronchiectasis exacerbations

HR, 0.28 (95%CI, 0.16-0.50); P < 0.0001a

*Log-rank test applied post hoc to the time-to-event data.

BLQ, below the limit of quantification; HR, hazard ratio; NE, neutrophil elastase.
Chalmers J, Brensocatib in NCFBE: The WILLOW Study

Change in Post-Bronchodilator ppFEV₁ at Week 24

- Placebo-treated patients showed a numerically larger lung function decline than brensocatib-treated patients.

Analysis of Covariance, least squares (LS) mean difference between groups was not significant ppFEV₁, percent predicted forced expiratory volume in 1 second.
Safety Summary

<table>
<thead>
<tr>
<th>Safety Parameter</th>
<th>Placebo (n = 85)</th>
<th>Brensocatib 10 mg (n = 81)</th>
<th>Brensocatib 25 mg (n = 89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAE resulting in study discontinuation</td>
<td>3 (3.5)</td>
<td>3 (3.7)</td>
<td>4 (4.5)</td>
</tr>
<tr>
<td>TEAE resulting in treatment discontinuation</td>
<td>9 (10.6)</td>
<td>6 (7.4)</td>
<td>6 (6.7)</td>
</tr>
<tr>
<td>Serious TEAE</td>
<td>19 (22.4)</td>
<td>11 (13.6)</td>
<td>10 (11.2)</td>
</tr>
<tr>
<td>Serious TEAEs in ≥ 3% of patients in any group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infective exacerbation of bronchiectasis</td>
<td>9 (10.6)</td>
<td>5 (6.2)</td>
<td>4 (4.5)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3 (3.5)</td>
<td>0</td>
<td>4 (4.5)</td>
</tr>
<tr>
<td>Any TEAE</td>
<td>67 (78.8)</td>
<td>75 (92.6)</td>
<td>74 (83.1)</td>
</tr>
<tr>
<td>TEAEs in ≥ 10% of patients in any group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>10 (11.8)</td>
<td>15 (18.5)</td>
<td>12 (13.5)</td>
</tr>
<tr>
<td>Headache</td>
<td>3 (3.5)</td>
<td>8 (9.9)</td>
<td>12 (13.5)</td>
</tr>
<tr>
<td>Sputum increased</td>
<td>6 (7.1)</td>
<td>9 (11.1)</td>
<td>9 (10.1)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2 (2.4)</td>
<td>3 (3.7)</td>
<td>9 (10.1)</td>
</tr>
<tr>
<td>Infective exacerbation of bronchiectasis</td>
<td>9 (10.6)</td>
<td>5 (6.2)</td>
<td>4 (4.5)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>9 (10.6)</td>
<td>5 (6.2)</td>
<td>3 (3.4)</td>
</tr>
</tbody>
</table>

TEAE, treatment-emergent adverse event.

Chalmers J, Brensocatib in NCFBE: The WILLOW Study

ATS 2020 | VIRTUAL
Adverse Events of Special Interest

<table>
<thead>
<tr>
<th>no. (%)</th>
<th>Placebo (n = 85)</th>
<th>Brensocatib 10 mg (n = 81)</th>
<th>Brensocatib 25 mg (n = 89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEs of special interest</td>
<td>23 (27.1)</td>
<td>27 (33.3)</td>
<td>35 (39.3)</td>
</tr>
<tr>
<td>Skin(^{a})</td>
<td>10 (11.8)</td>
<td>12 (14.8)</td>
<td>21 (23.6)</td>
</tr>
<tr>
<td>Dental</td>
<td>3 (3.5)</td>
<td>13 (16.0)</td>
<td>9 (10.1)</td>
</tr>
<tr>
<td>Infection</td>
<td>15 (17.6)</td>
<td>11 (13.6)</td>
<td>15 (16.9)</td>
</tr>
<tr>
<td>Change in periodontal pocket depth ≥ 2 mm(^{b})</td>
<td>9 (13.0)</td>
<td>12 (16.9)</td>
<td>14 (19.2)</td>
</tr>
<tr>
<td>Change in periodontal pocket depth ≥ 2 mm and ≥ 5 mm absolute depth(^{b})</td>
<td>8 (11.6)</td>
<td>8 (11.3)</td>
<td>9 (12.3)</td>
</tr>
</tbody>
</table>

\(^{a}\) Includes hyperkeratosis:
- Placebo (n = 1), brensocatib 10 mg (n = 3), brensocatib 25 mg (n = 1)
- Resolved or improved at the end of the study
- No interruption of study drug

\(^{b}\) Change in 3 or more areas, assessed at 3 dental visits. Includes patients with both a baseline and week 24 dental evaluation (placebo, n = 69; brensocatib 10 mg, n = 71; brensocatib 25 mg, n = 73)
Conclusions

• Brensocatib, at doses of 10 and 25 mg, demonstrated a significant effect in prolonging time to first exacerbation; in addition, a significant reduction in the annualized rate of exacerbations was observed with 10 mg

• A dose dependent reduction in neutrophil elastase levels in sputum was observed, which supports the mechanism of action of brensocatib reducing neutrophil serine protease activation

• Both doses of brensocatib were well tolerated; overall safety profile of both doses were comparable with that of placebo

• If these results are confirmed in a phase 3 trial, brensocatib may represent a novel nonantibiotic treatment option for prevention of exacerbations
Vicious Cycle of Bronchiectasis and Opportunities for Intervention

NCFBE, non-cystic fibrosis bronchiectasis
Targeting neutrophilic inflammation

Unmet need across multiple diseases for a neutrophil targeted therapeutic

Transformative potential in lung disease, and beyond

- **Lung diseases**
 - Bronchiectasis
 - COPD
 - Severe asthma
 - Cystic fibrosis
 - Pneumonia
 - COVID-19

- **Cardiovascular**
 - Ischaemic heart disease
 - Peripheral vascular disease

- **Renal disease**
 - Chronic renal failure
 - Lupus nephritis

- **Gastrointestinal disease**
 - Inflammatory bowel disease

- **Systemic disease**
 - Cancer

- **Joint disease**
 - Rheumatoid arthritis

Chalmers J, Brensocatib in NCFBE: The WILLOW Study
Investigator-Initiated STOP-COVID19 Study

Brensocatib (INS1007) represents a first-in-class MOA (DPP1 inhibition) for a broad range of neutrophil-driven inflammatory diseases

- Works by inhibiting the enzyme that activates neutrophil serine proteases, which, when activated excessively, can cause tissue destruction and inflammation
- Positive Phase 2 data in non-cystic fibrosis bronchiectasis (NCFBE), a disease with no approved therapies
- Granted Breakthrough Therapy Designation by FDA in patients with NCFBE
- Global Phase 3 program in bronchiectasis begins 2H 2020

Brensocatib now being evaluated in investigator-initiated STOP-COVID19 study

- Double-blind, placebo-controlled trial in hospitalized patients with COVID-19
- Led by Professor James Chalmers, University of Dundee (Scotland) (lead investigator of Phase 2 WILLOW study in bronchiectasis)
- Up to 300 patients to be enrolled at 10 sites in the UK
- Hypothesis: By blocking damaging neutrophil proteases, brensocatib may reduce the progression to acute respiratory distress syndrome (ARDS)—a severe outcome of COVID-19 associated with high mortality
- Primary endpoint: Clinical improvement on an ordinal scale defined by the WHO
- Sample-size reassessment Q3 2020; final data late 2020/early 2021

PCR-confirmed COVID-19 infection

- Brensocatib 25 mg daily
- Placebo

Clinical status at day 29 (primary endpoint)
- Clinical status during hospitalization
 - National Early Warning Score
 - Oxygenation
 - Mechanical ventilation
 - Duration of Hospitalization
 - Mortality

Exploratory endpoints
Acknowledgments

• We thank the patients and their families for their support and participation, and the study investigators, study coordinators, and support staff across all sites.

• Financial support for this study was provided by Insmed Incorporated.

• Medical writing support was provided by Meditech Media, Ltd (Hamilton, NJ, USA), funded by Insmed Incorporated.
Brensocatib: Pipeline in a product

1. First-in-class neutrophil immunomodulator with potential in a broad range of diseases

2. Lead indication, bronchiectasis, represents significant global opportunity

3. Insmed is uniquely positioned to address current unmet need
Bronchiectasis is only the beginning of what brensocatib may offer to patients

<table>
<thead>
<tr>
<th>Series Unmet Need Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>Alpha-1 Antitrypsin Deficiency</td>
</tr>
<tr>
<td>Granulomatosis with Polyangiitis¹</td>
</tr>
</tbody>
</table>

* AstraZeneca has exercised its option to develop brensocatib in COPD & asthma through Phase 2b. Further development subject to agreement on commercial terms with Insmed.

1: Therapeutic areas with positive in vitro or in vivo data for brensocatib

<table>
<thead>
<tr>
<th>Larger Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication</td>
</tr>
<tr>
<td>Inflammatory Bowel Disease¹</td>
</tr>
<tr>
<td>Lupus¹</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>COPD*</td>
</tr>
<tr>
<td>Asthma*</td>
</tr>
</tbody>
</table>
Preclinical data support potential of brensocatib in Lupus Nephritis, GPA, and IBD

Lupus Nephritis
- **Kidney Damage**
- **Kidney Function**

Inflammatory Bowel Disease (IBD)
- **Intestinal Damage**
- **Intestinal Function**

Granulomatosis with Polyangiitis (GPA)
- Unstained & Isotype Controls
- PR3 Surface Expression (MFI)

- INS1007 also delayed the progression to severe proteinuria, and decreased renal histopathological sum scores and inflammatory cell infiltration into the kidney.
- INS1007 also reduced body weight loss and improved survival rate.
Bronchiectasis patients suffer from chronic respiratory symptoms and lung damage that leads to increased morbidity and mortality.

US Patient Demographics

- Mean age: 64
- 79% female
- 63% have NTM infection
- Average approximately 2 exacerbations/year

>60% of patients have Moderate to Severe bronchiectasis

Willow study population included patients with >= 2 exacerbations in 12 months prior to enrollment.

2: Internal Market Research (INS1007 NCFBE Opportunity Assessment – Trinity Jan 2018, Swoop Claims analysis)
FDA recognizes the severity of this disease and degree of unmet need with Breakthrough Therapy designation for brensocatib in non-CF bronchiectasis (NCFBE)

FDA Breakthrough Therapy designation

- Intended to treat a serious or life-threatening disease
- Clinical evidence that the drug may provide substantial improvement over existing therapies
- Provides eligibility for Rolling and Priority Review, if relevant criteria are met
- Provides enhanced dialogue with the Agency

MAC= *Mycobacterium avium* complex; IPF=Idiopathic pulmonary fibrosis.
Bronchiectasis is a globally prevalent disease, preliminary data suggest significant need across regions.

- **U.S.**
 - 340K - 520K total diagnosed BE patients*

- **EU5†**
 - 350K - 500K total diagnosed BE patients**

- **Asia-Pacific**
 - ~1M to 5M Total diagnosed BE patients

*Weycker, et al. Prevalence and incidence of NCFBE among US adults in 2013. Chronic Respiratory Disease. 2017; **Estimates suggest broadly similar per capita prevalence in EU5 as in US; †Asia-Pacific rates 3X to ~10X higher than those in the US; Zhou, YM et al. The prevalence and risk factors of BE in residents aged 40 years old and above in seven cities in China. 2013 †EU5 comprised of France, Germany, Italy, Spain and the United Kingdom.
Current prevalence estimates may underestimate global patient population, given underdiagnosis of bronchiectasis

Between 650,000 to 9 million COPD patients in the US (4%-54%) may also have bronchiectasis

Between 450,000 to 675,000 asthma patients in the US (2%-3%) may also have bronchiectasis

COPD and asthma: Large diagnosed populations exist globally

- **U.S.**
 - 16.5M total diagnosed COPD patients*
 - 22.5M total diagnosed asthma patients*

- **EU5†**
 - 25M total diagnosed COPD patients**
 - 15M total diagnosed asthma patients**

- **China**
 - 161M total diagnosed COPD patients†
 - 49M total diagnosed asthma patients

- **Japan**
 - 12M total diagnosed COPD patients†
 - 3M total diagnosed asthma patients

† EU5 comprised of France, Germany, Italy, Spain and the United Kingdom
Synergy with current US commercial business leverages deeply-held insights, relationships and access

78% of highest-volume BE treaters are current ARIKAYCE called upon universe\(^1\)

High degree of overlap in physicians treating NTM and bronchiectasis (BE)

Modest increase in salesforce would allow us to reach 70% of BE patient opportunity

\(^1\): 78% of top decile pulmonologists who treat bronchiectasis are T1/T2 ARIKAYCE targets
Insmed is well positioned to support a successful global launch in bronchiectasis

- Proven US launch capabilities with ARIKAYCE®
- Geographic and target HCP overlap with current US Sales structure
- Experience with patient finding and activation
- EU/Japan teams mobilized for launch success
- Advocacy and patient support
Summary

1. The WILLOW study shows potential for brensocatib in bronchiectasis as a Breakthrough Therapy

2. Insmed is positioned for commercial success with brensocatib in bronchiectasis

3. Tremendous global potential for brensocatib beyond bronchiectasis
Thank You