Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoeisis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to:

INFORMATION

Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoiesis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to:

INFORMATION

Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoiesis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to:

INFORMATION

Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoiesis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to:

INFORMATION

Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoiesis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to:

INFORMATION

Myelofibrosis (MF) is a heterogeneous, progressive, and fatal disease.1

Underlying biological hallmarks include aberrant blood and bone marrow differentiation, cytokine production and inflammation, bone marrow fibrosis, and extramedullary hematopoiesis. An urgent need for therapies, beyond Janus kinase inhibitors (JAKi; e.g., ruxolitinib), with rapid, effective, and durable response that address underlying drivers of MF persists, due to:

- Lack of evidence of disease modification:
- Limited responses: rapid, effective, and durable response that address underlying drivers of MF persists, due to: