Forward-Looking Statements

This presentation contains statements about our future expectations, plans and prospects that constitute forward-looking statements for purposes of the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including risks relating to: both our and our collaborators’ ability to successfully research, obtain regulatory approvals for, develop and commercialize products based upon our technologies; our ability to obtain and maintain proprietary protection for our technologies and product candidates; our reliance on third parties to manufacture our preclinical and clinical drug supplies; competitive pressures; our ability to obtain and maintain strategic collaborations; compliance with our in-license agreements; our ability to successfully execute on, and receive favorable results from, our proprietary drug development efforts; market acceptance of our drug candidates; retaining members of our senior management; and our ability to raise additional funds to finance our operations.

The forward-looking statements included in this presentation represent our views as of the date of this presentation. We anticipate that subsequent events and developments will cause our views to change. While we may elect to update these forward-looking statements in the future, we specifically disclaim any obligation to do so. These forward-looking statements should not be relied upon as representing our views as of any date subsequent to the date of this presentation.

For more information regarding risks and uncertainties that could affect the results of our operations or financial condition review our filings with the Securities and Exchange Commission (in particular, our most recent Annual Report on Form 10-K and any subsequently filed Quarterly Reports on Form 10-Q).
Investment Highlights

- Focused on novel therapeutics for metabolic and endocrine diseases
 - Clinical programs demonstrate best-in-class efficacy data

- Metabolic Disease Program: VK2809 for NASH
 - Novel, selective thyroid receptor-β (TRβ) agonist
 - Phase 2a results demonstrate significant reduction in liver fat content and lipids
 - Phase 2b VOYAGE trial in biopsy-confirmed NASH ongoing

- Rare Disease Program: VK0214 for X-ALD
 - Novel, selective thyroid receptor-β (TRβ) agonist
 - In vivo data show improvement in key biomarkers
 - Phase 1b study in patients underway

- Other Pipeline Programs: Musculoskeletal and metabolic disorders
Pipeline Overview

<table>
<thead>
<tr>
<th>Development Programs</th>
<th>Indication</th>
<th>Stage of Development</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK2809 (TRβ agonist)</td>
<td>NASH</td>
<td>Preclin, Phase 2b</td>
<td>Phase 2b VOYAGE trial ongoing</td>
</tr>
<tr>
<td>VK0214 (TRβ agonist)</td>
<td>X-ALD</td>
<td>Phase 1b</td>
<td>Phase 1b ongoing</td>
</tr>
<tr>
<td>VK5211 (SARM)</td>
<td>Hip fracture, muscle wasting</td>
<td>Phase 2</td>
<td>Phase 2 completed</td>
</tr>
<tr>
<td>VK0612 (FBPase inhibitor)</td>
<td>Type 2 Diabetes</td>
<td>Phase 2a</td>
<td>Phase 2a completed</td>
</tr>
<tr>
<td>VK1430 (DGAT-1 inhibitor)</td>
<td>Hypertriglyceridemia, NASH</td>
<td>Preclinical</td>
<td>Preclinical</td>
</tr>
</tbody>
</table>
Metabolic Disease Program
VK2809: Selective Thyroid Receptor-β Agonist
Liver Disorders
Metabolic Disease Program: Selective Thyroid-β Agonists

- Proprietary platform for small molecule thyroid hormone mimetics
 - Highly tissue and receptor selective
 - Produce potent lipid reductions in animals and humans
 - Unique chemical scaffolds, expected wider safety window vs. other approaches

- Biological profiles suggest potential benefit in multiple indications
 - Broad: NASH, hypercholesterolemia, dyslipidemia
 - Rare: X-linked adrenoleukodystrophy (X-ALD), other

- Lead molecules VK2809, VK0214
 - Oral, once-daily formulations
 - VK2809: Phase 2b ongoing, biopsy-confirmed NASH
 - VK0214: Phase 1b ongoing, AMN
Thyroid Hormone Receptor Overview

Nuclear hormone receptors: 2 main types

Thyroid hormone receptor beta (TRβ)
Liver

- Regulates lipid metabolism
- Reduces LDL-C, triglycerides, atherogenic proteins
- Improves metabolic control

Thyroid hormone receptor alpha (TRα)
Heart, skeletal muscle

- Proarrhythmic potential
- Elevates heart rate
- Bone/cartilage effects

Positive effects

Negative effects

Therapeutic goal, lipid setting: Beta receptor selectivity, minimize alpha effects
Thyroid Receptor β Agonists for NAFLD and NASH

- β-Receptor: Key role in lipid metabolism; systemic and liver-specific effects
- Receptor localized to liver, limited ex-hepatic expression
- In vivo evidence suggests β-activation provides anti-fibrotic benefits
- Clinical data indicate correlation between reduced liver fat, improvement in NAS

An agent that reduces liver fat, improves systemic lipids, and antagonizes fibrotic signaling could provide multi-pronged benefits in NASH
VK2809: Unique Liver-Targeted Characteristics

VK2809, Novel Prodrug

Following oral dosing:
- Cyp3A4-mediated cleavage of prodrug
- 3A4 is primarily expressed in liver
- Results in targeted delivery of drug to liver

VK2809A, Potent TRβ Agonist, 2.2 nM Ki

Selective activation, differentiated chemistry lends VK2809 liver selectivity; potentially minimizes risk of systemic effects
VK2809 Significantly Reduces Steatosis in Diet-Induced NASH

- Evaluation in biopsy-confirmed diet-induced NASH model
 - Rodent model designed to reflect progression of disease in humans
 - Animals biopsied pre-study; only those with NASH and fibrosis selected
 - VK2809 dosed once-daily for 8 weeks

Treatment with VK2809 significantly improves lipids, steatosis, NAS at 8 weeks; well-tolerated with no evidence of toxicity

Change in Liver Lipids Following 8 Weeks Dosing With VK2809

<table>
<thead>
<tr>
<th>Lipid</th>
<th>% Reduction VK2809 treated vs. vehicle</th>
<th>% Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglycerides</td>
<td>-70.0%</td>
<td>-70.0%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-64.6%</td>
<td>-64.6%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total Lipids</td>
<td>-79.5%</td>
<td>-79.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>NAS</td>
<td>-39.7%</td>
<td>-39.7%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
VK2809 Improves Fibrosis in Diet-Induced NASH Model

- Significant reductions in fibrosis, collagen, hydroxyproline after 8 weeks
- Supports thesis that selective TRβ activation produces broad metabolic benefits

VK2809 significantly improved NASH and fibrosis in this model
VK2809-201: Phase 2a Study Design

- **NAFLD patients with ≥8% liver fat, elevated LDL-C and triglycerides**

 - **Randomize**
 - Placebo
 - 5 mg VK2809 QD
 - 10 mg VK2809 QOD
 - 10 mg VK2809 QD

 - **Follow-up**

 - **Double-Blind Treatment, Weeks 1-12**
 - D1
 - W1
 - W4
 - W6
 - W8
 - W12 MRI-PDFF

 - **Weeks 13-16**
 - W16 MRI-PDFF

- **Multi-arm, dose-ranging, 12 week Phase 2a trial**
 - **Primary endpoint**: Change in LDL-C vs. placebo
 - **Secondary endpoint**: Change in liver fat by MRI-PDFF
 - **Exploratory endpoints**: Changes in atherogenic proteins
VK2809 Significantly Reduced LDL-C After 12 Weeks

- All VK2809 cohorts statistically significantly reduced vs. baseline
- Placebo-adjusted change from baseline
 - 5 mg QD: -23.7 mg/dL
 - 10 mg QOD: -27.1 mg/dL
 - 10 mg QD: -28.3 mg/dL

Mean % Change in LDL-C at 12 Weeks

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline (mg/dL)</th>
<th>% Change from Baseline</th>
<th>p-value vs. placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (n=16)</td>
<td>142.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VK2809 5 mg QD (n=10)</td>
<td>140.0</td>
<td>-23.7</td>
<td>0.080</td>
</tr>
<tr>
<td>VK2809 10 mg QOD (n=15)</td>
<td>150.3</td>
<td>-27.1</td>
<td>0.034</td>
</tr>
<tr>
<td>VK2809 10 mg QD (n=16)</td>
<td>140.4</td>
<td>-28.3</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* p < 0.05
VK2809 Produced Significant Relative Reductions in Liver Fat

- Significant Relative Reductions from Baseline in Liver Fat by MRI-PDFF
- Maximal reductions at Week 12
 - 5 mg QD: 78%
 - 10 mg QOD: 72%
 - 10 mg QD: 76%
VK2809 Cohorts Demonstrated High Relative Response Rates

- Up to 100% of VK2809 patients experienced response, as defined by ≥30% decrease in liver fat at Week 12
- Combined VK2809 cohorts demonstrated 88% response rate
- 70% of all patients receiving VK2809 demonstrated liver fat reductions ≥50%
- Reduction in liver fat correlated with improved odds of long-term histology benefit

![Graph showing response rates for different cohorts](image)

Patients with ≥30% Relative Reduction in Liver Fat at 12 Weeks

<table>
<thead>
<tr>
<th>Cohort</th>
<th>% Responders</th>
<th>p-value vs. placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (n=12)</td>
<td>16.7%</td>
<td>-</td>
</tr>
<tr>
<td>VK2809 5 mg QD (n=9)</td>
<td>100%</td>
<td>0.0002</td>
</tr>
<tr>
<td>VK2809 10 mg QOD (n=13)</td>
<td>76.9%</td>
<td>0.0048</td>
</tr>
<tr>
<td>VK2809 10 mg QD (n=11)</td>
<td>90.9%</td>
<td>0.0006</td>
</tr>
<tr>
<td>VK2809 Combined (n=33)</td>
<td>87.9%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Consistent MRI-PDFF reduction independent of risk factors:

- ALT > xULN
- BMI ≥ 30 kg/m²
- Baseline BP ≥ 140 mmHg
- Hispanic ethnicity

Mean % Change in Liver Fat at 12 Weeks in VK2809 Treated Patients

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Baseline ALT (%)</th>
<th>Baseline BMI (%)</th>
<th>Hypertension (%)</th>
<th>Hispanic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ xULN</td>
<td>13.9 (18)</td>
<td>17.7 (9)</td>
<td>18.1 (26)</td>
<td>15.1 (15)</td>
</tr>
<tr>
<td>≥ 30 kg/m²</td>
<td>20.8 (15)</td>
<td>16.8 (24)</td>
<td>13.0 (7)</td>
<td>18.7 (18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Change from Baseline</th>
<th>≤ xULN</th>
<th>< 30 kg/m²</th>
<th>BP < 140 mmHg</th>
<th>Not Hispanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>18</td>
<td>15</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>% Change</td>
<td>-49.6%</td>
<td>-58.0%</td>
<td>-52.7%</td>
<td>-56.7%</td>
</tr>
<tr>
<td>p</td>
<td>0.027</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

- *p<0.05; **p<0.01; ***p<0.001
<table>
<thead>
<tr>
<th>VK2809: Phase 2a Summary and Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● VK2809 produced robust reduction in</td>
</tr>
<tr>
<td>liver fat on MRI-PDFF in NAFLD</td>
</tr>
<tr>
<td>patients after 12 weeks of dosing</td>
</tr>
<tr>
<td>● Consistent effects observed across</td>
</tr>
<tr>
<td>common NASH risk factors</td>
</tr>
<tr>
<td>● Liver fat reduction maintained 4</td>
</tr>
<tr>
<td>weeks post-dosing</td>
</tr>
<tr>
<td>● VK2809 produced significant reduction</td>
</tr>
<tr>
<td>in plasma lipids, suggesting long-term</td>
</tr>
<tr>
<td>cardiovascular benefit</td>
</tr>
<tr>
<td>● VK2809 was safe and well-tolerated in</td>
</tr>
<tr>
<td>this 12-week study</td>
</tr>
</tbody>
</table>
| *88% of patients receiving VK2809 experienced ≥30% reduction in liver fat content, including all patients receiving 5 mg doses; 70% experienced reductions ≥50%*
| *Elevated ALT, BMI, hypertension, Hispanic ethnicity* |
| *70% of VK2809 patients remained responders 28 days after conclusion of dosing* |
| *LDL-C, triglycerides, and atherogenic proteins Apo B, Lp(a)* |
| *No SAEs observed, discontinuations well-balanced across cohorts* |
VOYAGE Study: 12-Month Phase 2b Study of VK2809

- Multi-arm, dose-ranging, 12-month Phase 2 trial
 - **Primary endpoint:** Change in MRI-PDFF vs. placebo at 3 months
 - **Secondary endpoint:** Change in histology at 12 months (NAS, fibrosis markers, etc.)
VOYAGE Study: 12-Month Phase 2b Study of VK2809

- Key inclusion criteria:
 - Biopsy-confirmed NASH with NAS ≥4
 - Liver fat content ≥8%
 - F2-F3 fibrosis, up to 25% F1

- Primary endpoint: Change in liver fat content at week 12

- Secondary, exploratory endpoint: Change in histology at 12 months
VK2809 Competitive Advantages

- Currently >40 NASH programs in Phase 2 or Phase 3 development
- What differentiates VK2809 from the crowd?

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orally available</td>
<td>Preferred route of administration for chronic therapy</td>
</tr>
<tr>
<td>Liver-targeted</td>
<td>Reduces risk of undesired effects in other tissues</td>
</tr>
<tr>
<td>Potently reduces liver fat</td>
<td>Weight loss and reduced liver fat correlate with NASH resolution, improved fibrosis markers</td>
</tr>
<tr>
<td>Reduces systemic lipids, may improve overall metabolic profile</td>
<td>Bodes well for potential long-term CV benefit</td>
</tr>
<tr>
<td>Well tolerated</td>
<td>No elevations in other lipids that may require polypharmacy</td>
</tr>
<tr>
<td></td>
<td>No GI impact, no pruritis or other tolerability issues to date</td>
</tr>
</tbody>
</table>
Rare Disease Program
VK0214
X-Linked Adrenoleukodystrophy
VK0214: Summary Profile

VK0214

- Potent small molecule thyroid receptor beta agonist
- 8 nM Ki at TRβ receptor
- >20:1 selective for β:α
- Oral formulation, once-daily dosing
- Robust lipid lowering effects in multiple models

Change in Lipids Following 12 Weeks of Dosing With VK0214; Rodent NASH model

<table>
<thead>
<tr>
<th></th>
<th>Plasma Triglycerides</th>
<th>Plasma Cholesterol</th>
<th>Liver Triglycerides</th>
<th>Liver Cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Reduction</td>
<td>-42.0%</td>
<td>-79.7%</td>
<td>-76.6%</td>
<td>-54.3%</td>
</tr>
<tr>
<td>% Difference</td>
<td>-42.0%</td>
<td>-79.7%</td>
<td>-76.6%</td>
<td>-54.3%</td>
</tr>
<tr>
<td>p-value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Demonstrates in vivo lipid reducing efficacy comparable to VK2809
VK0214 for X-ALD

- **X-Linked adrenoleukodystrophy (X-ALD)**
 - Orphan neurodegenerative disorder
 - X-linked: Carried by females, primarily manifesting in males
 - No cure, no approved therapy

- **Most severe form: Cerebral ALD**
 - Rapidly progressive inflammatory demyelination; disruption of BBB
 - Affects ~35% before age 12 (CCALD), ~20% between age 20 – 35 (CALD)
 - Deterioration in speech, cognition; vegetative state within 3-5 years

- **Most common form: Adrenomyeloneuropathy (AMN)**
 - Affects spinal cord, motor neurons; no inflammatory component or brain involvement
 - Affects nearly all adult patients; considered “default” manifestation of ALD
 - Progressive motor impairment; wheelchair confinement, leg paralysis common

TRβ: X-Linked Adrenoleukodystrophy

Caused by mutation in gene for the ATP-Binding Cassette transporter D1 (ABCD1)

- Peroxisomal transporter of very long chain fatty acids (VLCFA)

ABCD1: Normal function to transport VLCFA into peroxisome for degradation

X-ALD: Defective ABCD1 leads to accumulation of VLCFA in tissues

High VLCFA levels disrupt cell membranes; inflammatory demyelination in brain tissue; motor neuron deterioration

TRβ Agonists: Stimulate expression of compensatory transporters ABCD2, 3; may mitigate VLCFA elevation

(Graphic adapted from http://www.x-ald.nl/origin-and-metabolism-of-vlcfa/.)
Strong Rationale for TRβ Role in X-ALD

- Alternative VLCFA transporters ABCD2,-3 are induced by TRβ receptor
 - Mechanistically compensate for ABCD1 deficiency
- Over-expression of ABCD2 corrects VLCFA elevation *in vitro* and *in vivo*
- TRβ agonists such as VK0214 hold promise
- *In vitro* PoC established in X-ALD fibroblasts

VK0214 successfully induces ABCD2 expression in human X-ALD cells

VK0214: *In Vivo* Proof-of-Concept Data, ABCD1 KO Mouse

- ABCD1 Knockout model: Mimics biochemical features of human X-ALD
- VK0214: Durable and progressive reductions in plasma VLCFAs
 - Tissue effects suggest encouraging CNS activity following long-term exposure

Reductions in Plasma VLCFA-LPC, ABCD1 Knockout Model

<table>
<thead>
<tr>
<th>Time</th>
<th>C26:0</th>
<th>C24:0</th>
<th>C22:0</th>
<th>C20:0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Chg: 6 Weeks
- C26:0: -29%
- C24:0: -21%
- C22:0: -43%
- C20:0: -54%

% Chg: 12 Weeks
- C26:0: 48%
- C24:0: -51%
- C22:0: -55%
- C20:0: -57%

% Chg: 25 Weeks
- C26:0: -45%
- C24:0: -61%
- C22:0: -74%
- C20:0: -82%

p-value:
- C26:0: <0.0001
- C24:0: <0.0001
- C22:0: <0.0001
- C20:0: <0.0001
VK0214: Phase 1 SAD-MAD Study Design

- Single dose cohort 1
 - 5 mg
 - Sentinel dose
 - 5 mg
 - 7 days
 - 1 active
 - 1 PBO

- Multiple doses cohort 1
 - 5 mg
 - Treatment 14 days
 - 7 days
 - VK0214 = 6
 - PBO = 2
 - DLRT

- Single dose cohort 2
 - 10 mg

- Multiple doses cohort 2
 - 10 mg

- Single dose cohort 3
 - 25 mg

- Multiple doses cohort 3
 - 25 mg

- Treatment 14 days
 - 7 days

- DLRT
 - Continues

- Concurrent SAD/MAD follow “stacked” cohort approach
 - MAD commences once prior SAD cohort demonstrates safety

- Primary objective: Safety, tolerability, pharmacokinetics

DLRT = Dose Level Review Team
VK0214 LDL-C Effect at 14 Days

- Reduction in LDL-C similar to observations with VK2809
- Initial effect observed @ ~10 mg
- Appears to plateau at approximately 20% reduction from baseline

Graph: Mean % Change in LDL-C at Day 14

- Placebo (n=11) baseline: 139.7 mg/dL
- VK0214 5 mg (n=6): 127.5 mg/dL
- VK0214 10 mg (n=6): 129.7 mg/dL
- VK0214 25 mg (n=6): 138.0 mg/dL
- VK0214 50 mg (n=6): 136.2 mg/dL
- VK0214 75 mg (n=6): 104.8 mg/dL
- VK0214 100 mg (n=6): 133.0 mg/dL

Table: % Change From Baseline

<table>
<thead>
<tr>
<th>% Change:</th>
<th>Placebo (n=11)</th>
<th>VK0214 5 mg (n=6)</th>
<th>VK0214 10 mg (n=6)</th>
<th>VK0214 25 mg (n=6)</th>
<th>VK0214 50 mg (n=6)</th>
<th>VK0214 75 mg (n=6)</th>
<th>VK0214 100 mg (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8%</td>
<td>-</td>
<td>3.8%</td>
<td>12.5%</td>
<td>21.4%</td>
<td>19.5%</td>
<td>19.1%</td>
<td>18.9%</td>
</tr>
<tr>
<td>p-value:</td>
<td>0.2827</td>
<td>0.0230</td>
<td>0.0040</td>
<td>0.0060</td>
<td>0.0003</td>
<td>0.0049</td>
<td></td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01; ***p<0.001

~20% reduction from baseline consistent with TRβ agonist mechanism
VK0214 Triglyceride Effect at 14 Days

- Triglyceride reduction mirrors reported efficacy from TRβ agonism
- Onset likely between 10 mg – 25 mg
- Plateau effect at approximately 35% to 40% reduction from baseline

Overall effect similar to VK2809 12 week experience
VK0214 Apolipoprotein B Effect at 14 Days

- Significant reduction in ApoB observed at all doses >5.0 mg
- Plateau observed at approximately 25% - 30% reduction from baseline
- Lp(a) reductions observed at all doses

<table>
<thead>
<tr>
<th>% Change From Baseline</th>
<th>Placebo (n=11)</th>
<th>VK0214 5 mg (n=6)</th>
<th>VK0214 10 mg (n=6)</th>
<th>VK0214 25 mg (n=6)</th>
<th>VK0214 50 mg (n=6)</th>
<th>VK0214 75 mg (n=6)</th>
<th>VK0214 100 mg (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Change:</td>
<td>89.5</td>
<td>144.3</td>
<td>91.0</td>
<td>99.7</td>
<td>145.8</td>
<td>129.8</td>
<td>157.0</td>
</tr>
<tr>
<td>p-value:</td>
<td>-</td>
<td>0.0766</td>
<td>0.0061</td>
<td><0.0001</td>
<td>0.0004</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01; ***p<0.001
Takeaways From VK0214 Phase 1 SAD/MAD Study

- Encouraging overall safety and tolerability, no SAEs observed
- No meaningful impact to vital signs, cardiovascular parameters, thyroid axis
- Attractive PK profile; predictable exposures with once-daily dosing
- Preliminary lipid data suggest similar efficacy to VK2809
- Results support further study in adrenomyeloneuropathy (AMN) patients
VK0214 Phase 1b Study in Adrenomyeloneuropathy

Adult males with adrenomyeloneuropathy

Randomize

Placebo (up to n=12)

20 mg VK0214 (up to n=9)

40 mg VK0214 (up to n=9)

Higher doses pending low/mid data

Follow-up

Double-Blind Treatment, Days 1 - 28

7-day follow-up

Screening 21 days

D1 D2 D7 D14 D21 D28 D35

- Multicenter, parallel cohort, 28-day Phase 1b trial in adrenomyeloneuropathy
 - Higher doses may be explored pending review of initial cohorts
- Safety, tolerability, change in VLCFAs in male patients with AMN
VK0214 Highlights and Current Status

- Potential to be best in-class oral, small molecule TRβ therapeutic for X-ALD
- Encouraging efficacy with rapid (6 weeks) and progressive (up to 25 weeks) VLCFA reductions in plasma, brain, spinal cord and liver
- Phase 1 study in healthy volunteers demonstrated lipid lowering effects
- Phase 1b proof-of-concept study in X-ALD underway
- VK0214 has received Orphan Drug status from the FDA
Financial Summary

- Capital structure and summary financials

<table>
<thead>
<tr>
<th>Capital Structure</th>
<th>In ‘000s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shares outstanding</td>
<td>78,235</td>
</tr>
<tr>
<td>Options, RSUs</td>
<td>4,890</td>
</tr>
<tr>
<td>Warrants</td>
<td>487</td>
</tr>
<tr>
<td>Total shares, options, RSUs, warrants</td>
<td>83,612</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financials</th>
<th>Sept 30, 2021 ($’000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash burn YTD 3Q21</td>
<td>$32,280</td>
</tr>
<tr>
<td>Cash and ST Investments</td>
<td>$216,135</td>
</tr>
</tbody>
</table>

Notes: 1) As of September 30, 2021
Investment Highlights

- Focused on novel therapeutics for metabolic and endocrine diseases
 - Clinical programs demonstrate best-in-class efficacy data

- Metabolic Disease Program: VK2809 for NASH
 - Novel, selective thyroid receptor-β (TRβ) agonist
 - Phase 2a results demonstrate significant reduction in liver fat content and lipids
 - Phase 2b VOYAGE trial in biopsy-confirmed NASH ongoing

- Rare Disease Program: VK0214 for X-ALD
 - Novel, selective thyroid receptor-β (TRβ) agonist
 - In vivo data show improvement in key biomarkers
 - Phase 1b study in patients underway

- Other Pipeline Programs: Musculoskeletal and metabolic disorders